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Proving Information Inequalities by Gaussian
Elimination

Laigang Guo, Member, IEEE, Raymond W. Yeung, Fellow, IEEE, and Xiao-Shan Gao, Senior Member, IEEE

Abstract—The proof of information inequalities and identi-
ties under linear constraints on the information measures is
an important problem in information theory. For this purpose,
ITIP and other variant algorithms have been developed and
implemented, which are all based on solving a linear program
(LP). Building on our recent work [23], we developed in this
paper an enhanced approach for solving this problem.

Index Terms—Entropy, mutual information, information in-
equality, information identity, machine proving, ITIP.

I. INTRODUCTION

In information theory, we may need to prove various
information inequalities and identities that involve Shannon’s
information measures. For example, such information in-
equalities and identities play a crucial role in establishing
the converse of most coding theorems. However, proving an
information inequality or identity involving more than a few
random variables can be highly non-trivial.

To tackle this problem, a framework for linear information
inequalities was introduced in [1]. Based on this framework,
the problem of verifying Shannon-type inequalities can
be formulated as a linear program (LP), and a software
package based on MATLAB called Information Theoretic
Inequality Prover (ITIP) was developed [3]. Subsequently,
different variations of ITIP have been developed. Instead
of MATLAB, Xitip [4] uses a C-based linear programming
solver, and it has been further developed into its web-based
version, oXitip [7]. minitip [5] is a C-based version of
ITIP that adopts a simplified syntax and has a user-friendly
syntax checker. psitip [6] is a Python library that can verify
unconstrained/constrained/existential entropy inequalities. It
is a computer algebra system where random variables,
expressions, and regions are objects that can be manipulated.
AITIP [9], [8] is a platform that not only provides analytical
proofs for Shannon-type inequalities but also give hints on
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constructing a smallest counterexample in case the inequality
to be verified is not a Shannon-type inequality. There are
also some works that use advanced algorithms for linear
programming (LP) and polyhedron computing for proving
information inequalities. For the details of LP and polyhe-
dron computing methods and their applications in proving
information inequalities, the readers are referred to [21],
[25], [26], [27], [28], [29].

Using the above LP-based approach, to prove an infor-
mation identity f = 0, two LPs need to be solved, one
for proving the inequality f ≥ 0 and the other for proving
the inequality f ≤ 0. Roughly speaking, the amount of
computation for proving an information identity is twice the
amount for proving an information inequality. If the under-
lying random variables exhibit certain Markov or functional
dependence structures, there exist more efficient approaches
to proving information identities [11][13].

The LP-based approach is in general not computationally
efficient because it does not take advantage of the special
structure of the underlying LP. To tackle this issue, we de-
veloped in [23] a set of algorithms that can be implemented
by symbolic computation. Based on these algorithms, we
devised procedures for reducing the original LP to the
minimal size, which can be solved easily. These procedures
are computationally more efficient than solving the original
LP directly. In this paper, we develop a different symbolic
approach which not only make the reduction from the
original LP to the minimal size more efficient, but also in
many cases can prove the information inequality without
solving any LP.

The specific contributions of this paper are:
1) We develop a heuristic method to prove an informa-

tion inequality. This heuristic method does not prove an
information inequality by directly solving the associated LP,
but rather expedites the proof process through polynomial
reduction (Gaussian elimination).

2) This heuristic method may not succeed in proving the
inequality. If it does not succeed, it can simplify the original
LP into a smaller LP.

3) We give several examples that verify the effectiveness
of our method.

This paper is organized as follows. In Section II, we
review the linear programming method for proving infor-
mation inequalities. In Section III, we develop the main
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algorithms for homogeneous linear inequalities. In Sec-
tion IV, we present the procedures for proving information
inequalities and identities. In Section V, we present two ap-
plications that demonstrate the effectiveness of our approach.
Conclusion and Discussion are given in Section VI.

II. INFORMATION INEQUALITY PRELIMINARIES

In this section, we present some basic results related to
information inequalities and their verification. For a compre-
hensive discussion on the topic, we refer the reader to [2],
[10, Chs. 13-15].

It is well known that all Shannon’s information measures,
namely entropy, conditional entropy, mutual information,
and conditional mutual information are always nonnegative.
The nonnegativity of all Shannon’s information measures
forms a set of inequalities called the basic inequalities. The
set of basic inequalities, however, is not minimal in the sense
that some basic inequalities are implied by the others. For
example,

H(X|Y ) ≥ 0 and I(X;Y ) ≥ 0,

which are both basic inequalities involving random variables
X and Y , imply

H(X) = H(X|Y ) + I(X;Y ) ≥ 0,

again a basic inequality involving X and Y .
Throughout this paper, all random variables are discrete.

Unless otherwise specified, all information expressions in-
volve some or all of the random variables X1, X2, . . . , Xn.
The value of n will be specified when necessary. Denote the
set {1, 2, . . . , n} by Nn, the set {0, 1, 2, . . .} by N≥0 and the
set {1, 2, . . .} by N>0.

Theorem II.1. [1] Any Shannon’s information measure can
be expressed as a conic combination of the following two
elemental forms of Shannon’s information measures:

i) H(Xi|XNn−{i})
ii) I(Xi;Xj |XK), where i ̸= j and K ⊆ Nn − {i, j}.

The nonnegativity of the two elemental forms of Shan-
non’s information measures forms a proper but equivalent
subset of the set of basic inequalities. The inequalities in
this smaller set are called the elemental inequalities. In [1],
the minimality of the elemental inequalities is also proved.
The total number of elemental inequalities is equal to

u = n+

n−2∑
r=0

(
n
r

)(
n− r
2

)
= n+

(
n
2

)
2n−2.

In this paper, inequalities (identities) involving only Shan-
non’s information measures are referred to as informa-
tion inequalities (identities). The elemental inequalities are
called unconstrained information inequalities because they
hold for all joint distributions of the random variables. In
information theory, we very often deal with information

inequalities (identities) that hold under certain constraints
on the joint distribution of the random variables. These are
called constrained information inequalities (identities), and
the associated constraints are usually expressible as linear
constraints on Shannon’s information measures. We will
confine our discussion to constrained inequalities of this
type.

Example II.1. The celebrated data processing theorem
asserts that for any four random variables X , Y , Z and
T , if X → Y → Z → T forms a Markov chain,
then I(X;T ) ≤ I(Y ;Z). Here, I(X;T ) ≤ I(Y ;Z) is
a constrained information inequality under the constraint
X → Y → Z → T , which is equivalent to{

I(X;Z|Y ) = 0
I(X,Y ;T |Z) = 0,

or
I(X;Z|Y ) + I(X,Y ;T |Z) = 0

owing to the nonnegativity of conditional mutual informa-
tion. Either way, the Markov chain can be expressed as a set
of linear constraint(s) on Shannon’s information measures.

Information inequalities (unconstrained or constrained)
that are implied by the basic inequalities are called Shannon-
type inequalities. Most of the information inequalities that
are known belong to this type. However, non-Shannon-type
inequalities do exist, e.g., [12]. See [10, Ch. 15] for a
discussion.

Shannon’s information measures, with conditional mutual
information being the general form, can be expressed as a
linear combination of joint entropies by means of following
identity:

I(XG;XG′ |XG′′) = H(XG, XG′′) +H(XG′,G′′)
−H(XG, XG′ , XG′′)−H(XG′′).

where G,G′, G′′ ⊆ Nn. For the random variables
X1, X2, . . . , Xn, there are a total of 2n − 1 joint entropies.
By regarding the joint entropies as variables, the basic
(elemental) inequalities become linear inequality constraints
in R2n−1. By the same token, the linear equality constraints
on Shannon’s information measures imposed by the prob-
lem under discussion become linear equality constraints
in R2n−1. This way, the problem of verifying a (linear)
Shannon-type inequality can be formulated as a linear pro-
gram (LP), which is described next.

Let h be the column (2n−1)-vector of the joint entropies
of X1, X2, . . . , Xn. The set of elemental inequalities can
be written as Gh ≥ 0, where G is an u × (2n − 1)
matrix and Gh ≥ 0 means all the components of Gh are
nonnegative. Likewise, the constraints on the joint entropies
can be written as Qh = 0. When there is no constraint on
the joint entropies, Q is assumed to contain zero rows. The
following theorem enables a Shannon-type inequality to be
verified by solving an LP.
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Theorem II.2. [1] b⊤h ≥ 0 is a Shannon-type inequality
under the constraint Qh = 0 if and only if the minimum of
the problem

Minimize b⊤h, subject to Gh ≥ 0 and Qh = 0

is zero.

III. ALGORITHMS FOR HOMOGENEOUS LINEAR
INEQULITIES

In this section, we will develop new algorithms for prov-
ing information inequalities and identities. We will start by
discussing some notions pertaining to linear inequality sets
and linear equality sets. Then we will state some related
properties that are necessary for developing these algorithms.
For details, one can refer to [21], [22].

Let x = (x1, x2, . . . , xn)
T , and let Rh[x] be the set of all

homogeneous linear polynomials in x with real coefficients.
In this paper, unless otherwise specified, we assume that all
polynomials are linear and homogeneous, all inequality sets
have the form Sf = {fi ≥ 0, i ∈ Nm}, with fi ̸≡ 0 and
fi ∈ Rh[x], and all equality sets have the form Ef̃ = {f̃i =
0, i ∈ Nm̃} with f̃i ̸≡ 0 and f̃i ∈ Rh[x].

For a given set of polynomials Pf = {fi, i ∈ Nm} and the
corresponding set of inequalities Sf = {fi ≥ 0, i ∈ Nm},
and a given set of polynomials Pf̃ = {f̃i, i ∈ Nm̃} and
the corresponding set of equalities Ef̃ = {f̃i = 0, i ∈ Nm̃},
where fi and f̃i are polynomials in x, we write Sf = R(Pf ),
Pf = R−1(Sf ), Ef̃ = R̃(Pf̃ ) and Pf̃ = R̃−1(Ef̃ ).

Definition III.1. Let Sf = {fi ≥ 0, i ∈ Nm} and
Sf ′ = {f ′

i ≥ 0, i ∈ Nm′} be two inequality sets, and
Ef̃ and Ef̃ ′ be two equality sets. We write Sf ′ ⊆ Sf if
R−1(Sf ′) ⊆ R−1(Sf ), and Ef̃ ′ ⊆ Ef̃ if R̃−1(Ef̃ ′) ⊆
R̃−1(Ef̃ ). Furthermore, we write (fi ≥ 0) ∈ Sf to mean
that the inequality fi ≥ 0 is in Sf .

Definition III.2. Let R>0 and R≥0 be the sets of posi-
tive and nonnegative real numbers, respectively. A linear
polynomial F in x is called a positive (nonnegative) linear
combination of polynomials fj in x, j = 1, . . . ,m, if
F =

∑m
j=1 rjfj with rj ∈ R>0 (rj ∈ R≥0). A nonnegative

linear combination is also called a conic combination.

Definition III.3. The inequalities f1 ≥ 0, f2 ≥ 0, . . . , fm ≥
0 imply the inequality f ≥ 0 if the following holds:

For all x ∈ Rn, x satisfying f1 ≥ 0, f2 ≥ 0, . . . , fm ≥ 0
implies x satisfies f ≥ 0.

Definition III.4. Given a set of inequalities Sf = {fi ≥
0, i ∈ Nm}, for i ∈ Nm, fi ≥ 0 is called a redundant
inequality if fi ≥ 0 is implied by the inequalities fj ≥ 0,
where j ∈ Nm\{i}.

Definition III.5. Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. If fk(x) = 0 for all solutions x of Sf , then

fk(x) = 0 is called an implied equality of Sf . The inequality
set Sf is called a pure inequality set if Sf has no implied
equalities.

Lemma III.1. [23] Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. Then fk = 0 is an implied equality of Sf if
and only if

fk(x) ≡
m∑

i=1,i̸=k

pifi(x), (1)

where pi ≤ 0 for all i ∈ Nm\{k}.

Lemma III.2. [22] Given h1, . . . , hm, h0 ∈ Rh[x], h1 ≥
0, ..., hm ≥ 0 imply h0 ≥ 0 if and only if h0 is a conic
combination of h1, . . . , hm.

Definition III.6. Let f ∈ Rh[x] and x1 ≻ x2 ≻ · · ·xn be a
fixed variable order. The variable set of f , denoted by V (f),
is the set containing all the variables of f . The variable
sequence of f , denoted by V(f), is the sequence containing
all the variables of f in the given order. The coefficient
sequence of f , denoted by C(f), is the sequence containing
the coefficients corresponding to the variables in V(f). We
adopt the convention that C(f) = [0] and V (f) = ∅ for
f ≡ 0.

Definition III.7. For a polynomial F in x, let |F | be the
number of variables involved in F .

Definition III.8. Let Pf = {fi, i ∈ Nm}, where fi ∈
Rh[x]. The variable set of Pf , denoted by V (Pf ), is the
set containing all the variables of fi’s, i.e., V (Pf ) =
∪i∈Nm

V (fi).

Example III.1. Let Pf = {f1, f2}, where f1 = x1 +
x2, f2 = x1 − x3. Then, we have

V (f1) = {x1, x2}, V(f1) = [x1, x2], C(f1) = [1, 1],
V (f2) = {x2, x3}, and V (Pf ) = {x1, x2, x3}.

Observe that for any polynomial f(x), the following
equality holds:

{x : f(x) ≥ 0} = Projx{(x, a) : f(x)− a = 0, a ≥ 0}.1

Note that on the RHS, a new variable a is introduced.
Motivated by this observation, in the sequel we will say that
an inequality f(x) ≥ 0 is equivalent to the semi-algebraic
set {f(x) − a = 0, a ≥ 0}. Also, {fi(x) ≥ 0, i ∈ Nm} is
equivalent to {fi(x)− ai = 0, ai ≥ 0, i ∈ Nm}.

The following proposition is well known (see for example
[15, Chapter 1]).

Proposition III.1. Under the variable order x1 ≻ x2 ≻
· · · ≻ xn, the linear equation system Ef̃ = {f̃i = 0, i ∈
Nm̃} can be reduced by the Gauss-Jordan elimination to the
unique form

Ẽ = {xki
− Ui = 0, i ∈ Nñ}, (2)

1ProjxS denotes the projection of set S on x.
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where ñ is the rank of the linear system Ef̃ , k1 < k2 < · · · <
kñ, xki

is the leading term of xki
− Ui, and Ui is a linear

function in {xj , for ki < j ≤ n, j ̸= kl, i < l ≤ ñ}, with
kñ+1 = n+ 1 by convention.

Among x1, x2, . . . , xn, the variable xki
, i ∈ Nñ are

called the pivot variables, and the rest are called the free
variables.

We call the equality set Ẽ the reduced row echelon
form (RREF) of Ef̃ . Likewise, we call the polynomial
set R̃−1(Ẽ) the RREF of R̃−1(Ef̃ ). We say applying
the Gauss-Jordan elimination to R̃−1(Ef̃ ) to mean finding
R̃−1(Ẽ) by Proposition III.1.

Definition III.9. Let H = {hi, i ∈ Nm} be a
set of polynomials, where hi ∈ Rh[b] and b =
(x1, . . . , xn, a1, . . . , am)T . Under the variable order x1 ≻
· · · ≻ xn ≻ a1 ≻ · · · ≻ am, we can obtain the RREF of H ,
denoted by H̃ . Let H̃ = H1 ∪H2, where

V (h) ∩ {x1, x2, . . . , xn} ≠ ∅ for every h ∈ H1, and
V (h) ∩ {x1, x2, . . . , xn} = ∅ and V (h) ∩

{a1, a2, . . . , am} ≠ ∅ for every h ∈ H2.
H1 is called the partial RREF of H in x and a, and H2 is
called the partial RREF of H in a.

Algorithm 1 Dimension Reduction

Input: Sf , Ef̃ .
Output: The remainder set Rf .
1: Compute Ẽ for Ef̃ by Proposition III.1.
2: Substitute xki

by Ui in R−1(Sf ) to obtain the set R.
3: Let Rf = R\{0}.
4: return R(Rf ).

We say reducing Sf by Ef̃ to mean using Algorithm 1
to find R(Rf ). We also say reducing Pf by Ef̃ to mean
using Algorithm 1 to find Rf , called the remainder set (or
remainder if Rf is a singleton).

Definition III.10. Let Ef̃ = {f̃i = 0, i ∈ Nm̃} and Ef ′ =

{f ′
i = 0, i ∈ Nm′} be two equality sets, where f̃i, f ′

i ∈
Rh[x]. If the solution sets of Ef ′ and Ef̃ are the same, then
we say that Ef̃ and Ef ′ are equivalent.2

Definition III.11. Let hi ∈ Rh[a], i = 1, 2, where a =
(a1, . . . , am)T and let Ef̃ = {f̃i = 0, i ∈ Nm̃} be an
equality set, where f̃i ∈ Rh[a] for all i ∈ Nm̃. We say
h1 can be transformed to h2 by Ef̃ if h1 ≡ h2 + h3, where

h3 ≡
m′∑
i=1

qif
′
i , qi ∈ R and Ef ′ = {f ′

i = 0, i ∈ Nm′} is an

equivalent set of Ef̃ .

2With a slight of abuse of terminology, the solution set of Ef̃ refers to
the set {(x1, x2, . . . , xn) ∈ Rn : f̃i = 0, i ∈ Nm̃}.

Let F0 ∈ Rh[x] and Sf = {fi ≥ 0, i ∈ Nm}, where
fi ∈ Rh[x]. In the rest of this section, we discuss how to
solve the following problem.

Problem III.1. Prove F0 ≥ 0 subject to Sf .

We first give a method implemented by the following
algorithm for reducing Problem III.1 to another LP.

Algorithm 2 LP reduction Algorithm

Input: Problem III.1
Output: A reduced LP.
1: Let Gi = fi − ai, i ∈ Nm, where ai’s are assumed to

satisfy ai ≥ 0, i ∈ Nm.
2: Fix the variable order x1 ≻ x2 ≻ · · · ≻ xn ≻ a1 ≻

· · · ≻ am.
3: Apply the Gauss-Jordan elimination to {Gi, i ∈ Nm}

and obtain the RREF.
4: Let J0 be the partial RREF of {Gi, i ∈ Nm} in x and

a, and J1 be the partial RREF of {Gi, i ∈ Nm} in a.
5: Reduce F0 by J0 to obtain F .
6: The Problem III.1 is equivalent to

Problem III.2. Prove F ≥ 0 subject to R̃(J1) and
ai ≥ 0, i ∈ Nm.

7: return Problem III.2.

Remark III.1. In Algorithm 2, if Problem III.1 can be
solved, then F needs to satisfy V (F )∩{x1, . . . , xn} = ∅. If
there exist xi ∈ V (F ), then xi is a free variable in Problem
III.2, and Problem III.2 cannot be solved. Thus Problem III.1
cannot be solved. For example, we consider the problem

P1: Prove x1 + x3 ≥ 0 subject to x1 ≥ 0 and x2 ≥ 0.
Running Algorithm 2, the above problem becomes

P2: Prove a1 + x3 ≥ 0 subject to a1 ≥ 0.
Obviously, P2 cannot be proved since x3 is a free variable.

Let a = (a1, . . . , am)T , F ∈ Rh[a], fi ∈ Rh[a] for
i ∈ Nm̃, Sa = {ai ≥ 0, i ∈ Nm}, and Ea = {fi =
0, i ∈ Nm̃}. Based on the discussion above, we only need to
consider the case that F satisfies V (F )∩{x1, . . . , xn} = ∅.

To facilitate the discussion, we restate Problem III.2 in a
general form:

Problem III.3. Prove F ≥ 0 subject to Ea and Sa.

We say that a problem as given in Problem III.3 is “solvable”
if F ≥ 0 is implied by Ea and Sa.

Theorem III.1. Problem III.3 is solvable if and only if F
can be transformed into a conic combination of ai, i ∈ Nm

by Ea.

Proof. The sufficiency is obvious. We only need to prove
the necessity.
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Assume that Problem III.3 is solvable. By Proposition
III.1, we compute the RREF of Ea, denoted by Ẽ =
{aki

− Ui = 0, i ∈ Nñ}, and substitute aki
in F by Ui

to obtain F1. Then we see that

F ≡ F1 +

ñ∑
i=1

qi(aki − Ui), qi ∈ R. (3)

In other words, F can be transformed to F1 by Ea. Then we
substitute aki in Sa by Ui to obtain So = {gi ≥ 0, i ∈ Nm},
where gki

= Ui for i ∈ Nñ and gj = aj for j ∈ Nm\{ki, i ∈
Nñ}.

Now Problem III.3 is equivalent to

Problem III.4. Prove F1 ≥ 0 subject to So.

By Lemma III.2, Problem III.4 is solvable if and only if
F1 is a conic combination of gi, i ∈ Nm. Suppose F1 ≡∑m

i=1 pigi with pi ∈ R≥0. Then

F1 ≡
m∑
j=1

pjgj

≡
ñ∑

i=1

pki
Ui +

∑
j∈Nm\{ki,i∈Nñ}

pjaj

≡
ñ∑

i=1

pkiaki −
ñ∑

i=1

pki(aki − Ui) +
∑

j∈Nm\{ki,i∈Nñ}
pjaj

≡
m∑
i=1

piai −
ñ∑

i=1

pki
(aki

− Ui).

=
m∑
i=1

piai,

(4)
where the last step follows from the constraints in Ẽ.

So, F1 can be expressed as a conic combination of ai’s.
Then, by (3) and the second last line above, we obtain

F ≡ F1 +
ñ∑

i=1

qi(aki
− Ui)

≡
m∑
i=1

piai −
ñ∑

i=1

pki
(aki

− Ui) +
ñ∑

i=1

qi(aki
− Ui)

≡
m∑
i=1

piai +
ñ∑

i=1

(qi − pki
)(aki

− Ui)

(5)
where pi ∈ R≥0, pki

∈ R≥0 and qi ∈ R.
From Definition III.11, we see that F1 is a conic combina-

tion of gi, i ∈ Nm if and only if F can be transformed into
a conic combination of ai, i ∈ Nm by Ea. Hence, following
the discussion in the foregoing, the theorem is proved.

Definition III.12. Let Ea = {fi = 0, i ∈ Nm̃}, where fi is
a polynomial in a, be an equality set. We say eliminating a
variable ai from Ea to mean solving for ai in some fi = 0
with ai ∈ V (fi) to obtain ai = Ai and then substituting
ai = Ai into Ea to obtain EA = subs(ai = Ai, Ea)\{0 =
0}.

Let F be a polynomial in a. We say eliminating ai from
F by Ea to mean eliminating ai from Ea to obtain ai = Ai

and EA, and then substituting ai = Ai into F to obtain
F1 = subs(ai = Ai, F ).

The notions of redundant inequality and implied equality
in Definitions III.4 and III.5, respectively can be applied
in the more general setting in Problem III.3. Specifically,
ai = 0, i ∈ Nm is an implied equality if −ai ≥ 0 is
provable subject to Ea and Sa. Also, by eliminating ai for
some i ∈ Nm from Ea to obtain ai = Ai and EA, ai ≥ 0 is
a redundant inequality if Ai ≥ 0 is provable subject to EA

and Sa\{ai ≥ 0}.

Example III.2. Let Sa = {ai ≥ 0, i ∈ N5} and Ea =
{f1 = 0, f2 = 0}, where f1 = a1+a2 and f2 = a3−a4−a5.
Using f1 = 0, a1 ≥ 0 and a2 ≥ 0, we can obtain that
−a1 ≥ 0 and −a2 ≥ 0. Thus a1 = 0 and a2 = 0 are
implied equalities.

By eliminating a3 from Ea, we obtain a3 = a4 + a5 and
EA = {a1 + a2 = 0}. Since a4 + a5 ≥ 0 is obviously
provable subject to EA and Sa\{a3 ≥ 0}, we have that
a3 ≥ 0 is a redundant inequality.

Definition III.13. Let f be a polynomial in a =
{a1, a2, . . . , am}. Let m̄ ≤ m and j1, j2, . . . , jm̄ be dis-
tinct elements of {1, 2, . . . ,m}. If f =

∑m̄
i=1 piaji or

f = −
∑m̄

i=1 piaji with pi > 0, then f is called a Type
I linear combination of aji . If f =

∑m̄−1
i=1 piaji −pm̄ajm̄ or

f = −
∑m̄−1

i=1 piaji +pm̄ajm̄ with pi > 0, then f is called a
Type II linear combination of aji , and let single(f) = ajm̄ .

Definition III.14. In Problem III.3, if (f = 0) ∈ Ea and

1) if f is Type I, then ai = 0 for ai ∈ V (f) are called
trivially implied equalities;

2) if f is Type II, then single(f) ≥ 0 is called a trivially
redundant inequality.

Example III.3. Let Ea = {fi = 0, i ∈ N4}, where f1 =
a1 + a2, f2 = −a1 − a2, f3 = a4 − a5 − a6, and f4 =
a7 + a8 − 2a9. Then f1 and f2 are Type I, f3 and f4 are
Type II, single(f3) = a4, and single(f4) = a9. It can
readily be checked that a1 = 0 and a2 = 0 are trivially
implied equalities, and a4 ≥ 0 and a9 ≥ 0 are trivially
redundant inequalities.

In the rest of the paper, we denote the ith element of a
sequence B by B[i]. We also denote the ith element of a set
S of polynomials in x by S[i], where the elements in S are
assumed to be sorted in lexicographic order. For example,
x1 + 2x2 ≻ x2 + x5 and x3 + x5 ≻ x3 + x6.

Now we develop an algorithm to remove all trivially
implied equalities and trivially redundant inequalities in
Problem III.3. To facilitate the discussion, we use subs(·, ·)
to denote eleminating one or more variables from a set of
polynomials by substitution. The use of this notation will
be illustrated in Example III.4.
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Algorithm 3 Preprocessing Problem III.3

Input: Problem III.3.
Output: A reduced LP for Problem III.3.

1: Let E1 := R̃−1(Ea), S1 := R−1(Sa), F1 := F , i1 :=
1.

2: while i1 = 1 do
3: Let i1 := 0.
4: for i from 1 to |E1| do
5: Let f := E1[i].
6: if f is Type I then
7: // In this case, all equalities in R̃(V (f)) are

trivially implied equalities.
8: E1 := subs(R̃(V (f)), E1)\{0}.
9: S1 := S1\V (f).

10: F1 := subs(R̃(V (f)), F1).
11: i1 := 1.
12: end if
13: if f is Type II then
14: // In this case, the inequality single(f) ≥ 0 is a

trivially redundant inequality.
15: E1 := subs(single(f)

= solve(f, single(f)), E1)\{0}.
16: S1 := S1\{single(f)}.
17: F1 := subs(single(f)

= solve(f, single(f)), F1).
18: i1 := 1.
19: end if
20: if i1 = 1 then
21: Terminate the FOR loop.
22: end if
23: end for
24: end while
25: return A reduced LP:

Problem III.5. Prove F1 ≥ 0 subject to R̃(E1) and
R(S1).

Example III.4. We want to prove F = a1 + 2a2 − a3 ≥ 0
subject to Ea = {a1+a2−a3−a4−a5 = 0, a1+a4 = 0}
and Sa = {ai ≥ 0, i ∈ N5}. Following Algorithm 3, we
give the steps in detail.

Step 1. F1 = a1 + 2a2 − a3, E1 = {a1 + a2 − a3 − a4 −
a5, a1 + a4}, S1 = {a1, a2, a3, a4, a5}.

Step 2. Since a1 + a4 is Type I, we obtain a1 = 0 and
a4 = 0 from a1 + a4 = 0, a1 ≥ 0, and a4 ≥ 0.

Step 3. Obtain E1 := subs(a1 = 0, a4 = 0, E1})\{0} =
{a2−a3−a5}, F1 := subs(a1 = 0, a4 = 0, F1) = 2a2−a3,

and S1 := S1\{a1, a4} = {a2, a3, a5}.
Step 4. Now a2 − a3 − a5 is Type II. Then solve a2 from

a2 − a3 − a5 to obtain a2 = a3 + a5.
Step 5. Obtain F1 := subs(a2 = a3 + a5, F1) = a3 +

2a5, E1 := subs(a2 = a3 + a5, E1)\{0} = ∅, and S1 :=

S1\{a2} = {a3, a5}.
Now the reduced problem is to prove a3+2a5 ≥ 0 subject

to a3 ≥ 0 and a5 ≥ 0, which is obviously solvable.

Algorithm 3 removes all the trivially implied equalities
and trivially redundant inequalities from Problem III.3. In
Appendix A, we will develop two enhancements of Algo-
rithm 3: Algorithm 6 for removing all implied equalities and
Algorithm 7 for removing all redundant inequalities.

Toward solving Problem III.3, we first apply Algorithm
3 to reduce it to Problem III.5. The next algorithm is a
heuristic that attempts to solve this problem. If unsuccesful,
Algorithms 6 and 7 will be applied to further reduce the
LP into a smaller one that contains no implied equality and
redundant inequality. This will be illustrated in Example
III.5.

Algorithm 4 Heuristic search for a conic combination

Input: Problem III.5.
Output: SUCCESSFUL, or UNSUCCESSFUL and a re-

duced LP.

1: Let J := E1, J2 := ∅.
2: Let V(F1) = [ai1 , . . . , ain3

] and C(F1) = [p1, . . . , pn3
],

where 1 ≤ n3 ≤ m and the coefficient pj corresponds
to the variable aij for all j ∈ Nn3 .

3: while (there exists pj < 0 for some j ∈ Nn3) ∧ (|J | >
0) ∧ (aij ∈ V (f) for some f ∈ J) do

4: Solve aij from f = 0 to yield aij = Aij such that
Aij is a polynomial in V (f)\{aij}.

5: F1 := F1 − pj(aij −Aij ).
6: J := subs(aij = Aij , J)\{0}.
7: J2 := subs(aij = Aij , J2) ∪ {aij −Aij}.
8: Update V(F1) and C(F1).
9: end while

10: if there does not exist a negative element in C(F1) then
11: // F1 ≥ 0 is obviously implied by R(S1).
12: Return ‘SUCCESSFUL’.
13: else
14: // Need to solve

Problem III.6. Prove F1 ≥ 0 subject to R̃(J ∪J2)
and R(S1).

15: // Instead of reducing F1 by J ∪ J2 directly, since J2
is already in row echelon form after the WHILE loop,
we can simplify the computation as follows.

16: Reduce F1 and J2 by J to obtain the remainder F2

and the remainder set J̃2, respectively, and also the
RREF of J denoted by J̃ .

17: Let Ẽ1 = J̃ ∪ J̃2, which is an RREF of R̃−1(Ea).
18: // Problem III.6 is reduced to

Problem III.7. Prove F2 ≥ 0 subject to R̃(Ẽ1) and
R(S1).

19: Apply Algorithms 6 and 7 to Problem III.7 to obtain
a reduction of Problem III.5:
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Problem III.8. Prove F3 ≥ 0 subject to R̃(Ẽ2)
and R(V ({F3} ∪ Ẽ2)).

20: // Problem III.8 contains no implied equalities and
redundant inequalities. Thus we only need to consider
the inequality constraints R(V ({F3}∪Ẽ2)) instead of
R(S1), where |V ({F3} ∪ Ẽ2)| ≤ |S1|.

21: Return ‘UNSUCCESSFUL’ and Problem III.8.
22: end if

Remark III.2. In the WHILE loop in line 3 of Algorithm 4,
we need to choose one variable aij which has a negative
coefficient in the objective polynomial F1, and then solve aij
from one f ∈ J that satisfies aij ∈ V (f). Here, aij and f
are chosen randomly by using the “choose” command under
the RandomTools package in MAPLE. This package uses
the “Mersenne Twister” pseudorandom number generator
(PRNG) by default. In order to achieve repeatability of
the experiments, we need to set the random seed explicitly.
The “randomize” command under the RandomTools package
can be used to set the random seed. In this paper, we use
the seed, “randomize(0)”.3 For the information inequality
proof problems discussed in this paper, our experiments have
shown that the choice of the random seed may affect the
results of one or several cycles in Algorithm 4, but it has
little effect on the complete run of the algorithm, especially
for large information inequality proofs. In addition, because
the choices of aij and f are random, it is possible that the
same sequence of variables and polynomials are chosen in
two different attempts. However, the probability of this hap-
pening in two large-scale random calculations is very low,
and the installation of any mechanism to present this will
increase the average computational complexity. Of course,
it may be possible to devise mechanisms to search among
the possibilities, still in a random manner, but at a lower
computational cost to avoid repeating the same choice. This
will be left for future work.

Next, we give an example to show that Algorithm 4 is not
always successful even though the problem is solvable. In
general, different decisions made in the algorithm can lead
to different outcomes.

Example III.5. We want to determine whether F = − 1
2a1−

a2+a3+a4+a5−a6+a7+a9 ≥ 0 subject to Sa = {ai ≥
0, i ∈ N12} and Ea = {a1 + a2 − a3 − a4 = 0, a1 + a2 −
a4 + a9 + a10 − a11 − a12 = 0, a6 − a9 − a10 + a11 + a12 =
0, a5 − 2a6 = 0, a7 + a8 = 0}. Following Algorithm 4, we
give the steps in detail.

Step 1. Run Algorithm 3 to obtain
Problem III.5(∗). Prove F1 ≥ 0 subject to R̃(E1) and

R(S1), where F1 = − 1
2a1 − a2 + a3 + a4 + a6 + a9,

3For details about the command “randomize” and RandomTools package,
one can refer to the MAPLE official website user manual.

E1 = {a1 + a2 − a3 − a4, a1 + a2 − a4 + a9 + a10 −
a11 − a12, a6 − a9 − a10 + a11 + a12}, and S1 =
{a1, a2, a3, a4, a6, a9, a10, a11, a12}.

Here, we use Problem III.5(∗) to denote a special instance
of Problem III.5. Similar notations will apply.

Let J := E1 = {a1 + a2 − a3 − a4, a1 + a2 − a4 + a9 +
a10 − a11 − a12, a6 − a9 − a10 + a11 + a12}, J2 := ∅.

Referring to Line 4 of Algorithm 4, we discuss two
possible cases.

Case 1: Assume that we solve a2 from a1+a2−a3−a4 =
0.

Step 2. Solve a2 from a1 + a2 − a3 − a4 = 0 to obtain
a2 = −a1 + a3 + a4.
F1 := subs(a2 = −a1 + a3 + a4, F1) =

1
2a1 + a6 + a9.

Then F ≥ 0 is proved.
Case 2: Assume that we solve a1 from a1+a2−a3−a4 =

0.
Step 2. Solve a1 from a1 + a2 − a3 − a4 = 0 to obtain

a1 = −a2 + a3 + a4.
F1 := subs(a1 = −a2 + a3 + a4, F1) = − 1

2 (a2 − a3 −
a4) + a6 + a9.
J := subs(a1 = −a2 + a3 + a4, J)\{0} = {a3 + a9 +

a10 − a11 − a12, a6 − a9 − a10 + a11 + a12}.
J2 := subs(a1 = −a2+a3+a4, J2)∪{a1+a2−a3−a4} =

{a1 + a2 − a3 − a4}.
After executing this step, we observe that a2 /∈ V (J) and

the while loop in Algorithm 4 is terminated. However, we
have not yet solved the problem. Thus, we need to continue
with the remaining steps in Algorithm 4.

Step 3. Reduce F1 and J2 by J to obtain the remainder
F2 = − 1

2 (a2−a4−3a9−a10+a11+a12) and the remainder
set J̃2 = {a1+a2−a4+a9+a10−a11−a12}, respectively,
and also the RREF of J denoted by J̃ = {a3 + a9 + a10 −
a11 − a12, a6 − a9 − a10 + a11 + a12}.

Step 4. Let Ẽ1 = J̃∪J̃2 = {a1+a2−a4+a9+a10−a11−
a12, a3 + a9 + a10 − a11 − a12, a6 − a9 − a10 + a11 + a12}.

Now the problem becomes
Problem III.7(∗). Prove F2 ≥ 0 subject to R̃(Ẽ1) and

R(S1), where F2 = − 1
2 (a2 − a4 − 3a9 − a10 + a11 + a12),

Ẽ1 = {a1 + a2 − a4 + a9 + a10 − a11 − a12, a3 + a9 +
a10 − a11 − a12, a6 − a9 − a10 + a11 + a12}, and S1 =
{a1, a2, a3, a4, a6, a9, a10, a11, a12}.

Step 5. Run Algorithms 6 and 7 to reduce the problem to
Problem III.8(∗). Prove F3 ≥ 0 subject to R̃(Ẽ2) and

R(V ({F3} ∪ Ẽ2)), where F3 = 1
2a1 − a10 + a11 + a12 and

Ẽ2 = {a9 + a10 − a11 − a12}.
In this step, all the implied equalities and redundant

inequalities in Problem III.7(∗) are removed. The detailed
steps of this reduction from Problem III.7(∗) to Problem
III.8(∗) are given in Appendix A.

Since F3+Ẽ2[1] = 1
2a1+a9 ≥ 0, the above LP is solvable.

Thus, F ≥ 0 is provable.

In Line 4 of Algorithm 4, we need to solve aij from
f = 0 for some f ∈ J . Different choices of aij ’s can
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lead to different outcomes, which has been shown in Case
1 and Case 2 in Example III.5. Similarly, different choices
of f ∈ J can also lead to different outcomes. For example,
following from Example III.5, instead of solving a1 or a2
from a1 + a2 − a3 − a4 = 0 in Step 2, one can also solve
a1 or a2 from a1+a2−a4+a9+a10−a11−a12 = 0. The
details are omitted here.

Assume that Algorithm 4 outputs ‘UNSUCCESSFUL’
and Problem III.8, which is a reduction of Problem III.5.
We now present the following algorithm for solving this
problem.

Algorithm 5 Solving Problem III.8

Input: Problem III.8.
Output: The statement “Problem III.8 is solvable” is

TRUE or FALSE.

1: Assume that Ẽ2 has the form Ẽ2 = {akl
− Akl

, l ∈
Nr}, where r is the rank of Ẽ2, and Akl

’s are linear
combinations of the free variables akr+1

, . . . , akt
, where

t = |V (Ẽ2)| ≤ m.

2: Let F4 ≡ F3+
r∑

l=1

pl(akl
−Akl

), where pl, 1 ≤ l ≤ r are

to be determined. Since F3 and Akl
’s are in terms of the

free variables, we can rewrite F4 as F4 ≡
r∑

l=1

plakl
+

t∑
l=r+1

Plakl
, where Pl’s are linear combinations of pl’s.

3: // By Theorem III.1, Problem III.8 can be proved if and
only if F4 can be expressed as a conic combination of
ai’s.

4: Solve the following LP:
Problem III.9. min(0) such that pl ≥ 0, l ∈ Nr

and Pl ≥ 0, l ∈ Nt\Nr.
5: if Problem III.9 can be solved then
6: Declare that “Problem III.8 can be solved” is ‘TRUE’.
7: else
8: Declare that “Problem III.8 can be solved” is

‘FALSE’.
9: end if

10: return The argument “the Problem III.8 can be solved”
is TRUE or FALSE.

Remark III.3. From Theorem III.1, Problem III.3 is solv-
able if and only if F can be transformed into a conic
combination of ai, i ∈ Nm by Ea. We first apply Algorithm
3 to Problem III.3 to obtain Problem III.5, which contains no
trivially implied equalities and trivially redundant inequal-
ities. Then we use Algorithm 4, a heuristic method, to try
to find a conic combination for F1. Specifically, we identify
a monomial term of F1 with a negative coefficient and use
E1 to eliminate the corresponding variable in F1. Then we

repeat this operation until it can not be done. There can be
two possibilities. If a conic combination for F1 is obtained,
then the problem is solved. If a conic combination for F1 is
not obtained, then the problem may or may not be solvable.
Algorithm 5 deals with this case. Here, even if Algorithm 4
can not solve the problem directly, it will reduce Problem
III.3 to an equivalent LP but smaller in size, which can be
solved effectively by Algorithm 5.

IV. PROCEDURES FOR PROVING INFORMATION
INEQUALITY AND IDENTITY

In this section, we present two procedures for proving
information inequalities and identities under the constraint
of an inequality set and/or equality set. They are designed
in the spirit of Theorem II.2. To simplify the discussion,
H(X1, X2, . . . , Xn) will be denoted by h1,2,...,n, so on and
so forth. For a joint entropy t = hi1,i2,...,in , the set L(t) =
{i1, i2, ..., in} is called the subscript set of t. The following
defines an order among the joint entropies.

Definition IV.1. Let t1 = hi1,i2,...,in1
and t2 = hj1,j2,...,jn2

be two joint entropies. We write t1 ≻ t2 if one of the
following conditions is satisfied:

1) |L(t1)| > |L(t2)|,
2) |L(t1)| = |L(t2)|, il = jl for l = 1, . . . , k − 1 and

ik > jk.

A. Procedure I: Proving Information Inequalities

Input:
Objective information inequality: F̄ ≥ 0.
Elemental information inequalities: C̄i ≥ 0, i = 1, . . . ,m1.
Additional constraints: C̄j ≥ 0, j = m1 + 1, . . . ,m2;
C̄k = 0, k = m2 + 1, . . . ,m3.
// Here, F̄ , C̄i, C̄j , and C̄k are linear combination of
Shannon’s information measures.

Output: A proof of F̄ ≥ 0 if it is implied by the elemental
inequalities and the additional constriants.

Step 1. Transform F̄ and C̄i, i ∈ Nm3
to homogeneous

linear polynomials F̃ and C̃i, i ∈ Nm3
in joint entropies.

Step 2. Fix the joint entropies’ order h1,2,...,n ≻ · · · ≻ h1.
Apply Algorithm 1 to reduce the inequality set {C̃i ≥ 0, i ∈
Nm2

} by the equality set {C̃i = 0, i ∈ Nm3
\Nm2

} to obtain
the reduced inequality set {Ci ≥ 0, i ∈ Nm}.

Step 3. Reduce F̃ by the equality set {C̃i = 0, i ∈
Nm3

\Nm2
} to obtain F5.

// We need to solve

Problem IV.1. Prove F5 ≥ 0 under the constraints Ci ≥
0, i ∈ Nm.

Step 4. Under the variable order h1,2,...,n ≻ · · · ≻ h1 ≻
a1 ≻ · · · ≻ am, apply Algorithm 2 to Problem IV.1 to obtain

Problem III.2(∗). Prove F ≥ 0 subject to R̃(J1) and
ai ≥ 0, i ∈ Nm, where J1 = {fi, i ∈ Nm4

}.
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Step 5. Apply Algorithm 3 and Algorithm 4 successively
to the above problem. If Algorithm 4 outputs ‘SUCCESS-
FUL’, then the objective function F̄ ≥ 0 is proved. Other-
wise, the following reduced LP is obtained:

Problem III.8(∗). Prove F3 ≥ 0 subject to R̃(Ẽ2) and
R(V ({F3} ∪ Ẽ2)), where Ẽ2 = {f̃i, i ∈ Nm5}.

// Note that m5 ≤ m4 and |R(V ({F3} ∪ Ẽ2))| ≤ m.
Step 6. Apply Algorithm 5 to the above problem. If

Algorithm 5 outputs ‘TRUE’, then the objective function
F̄ ≥ 0 is proved. Otherwise, declare ‘Not Provable’.

B. Procedure II: Proving Information Identities

Input:
Objective information identity: F̄ = 0.
Elemental information inequalities: C̄i ≥ 0, i = 1, . . . ,m1.
Additional constraints: C̄j ≥ 0, j = m1 +1, . . . ,m2; C̄k =
0, k = m2 + 1, . . . ,m3;
// Here, F̄ , C̄i, C̄j , and C̄k are linear combinations of
information measures.
Output: A proof of F̄ = 0 if it is implied by the elemental
inequalities and the additional constraints.

Step 1. Transform F̄ and C̄i, i ∈ Nm3
to homogeneous

linear polynomials F̃ and C̃i, i ∈ Nm3
in joint entropies.

Step 2. Fix the joint entropies’ order h1,2,...,n ≻ · · · ≻
h1. Apply Algorithm 1 to reduce the inequality set {C̃i ≥
0, i ∈ Nm2

} by the equality set {C̃i = 0, i ∈ Nm3
\Nm2

}
to obtain the reduced inequality set {Ci ≥ 0, i ∈ Nm}.

Step 3. Reduce F̃ by the equality set {C̃i = 0, i ∈
Nm3

\Nm2
} to obtain F6.

// We need to solve

Problem IV.2. Prove F6 ≥ 0 under the constraints Ci ≥
0, i ∈ Nm.

Step 4. Under the variable order h1,2,...,n ≻ · · · ≻ h1 ≻
a1 ≻ · · · ≻ am, apply Algorithm 2 to Problem IV.2 to obtain

Problem III.2(∗). Prove F ≥ 0 subject to R̃(J1) and
ai ≥ 0, i ∈ Nm, where J1 = {fi, i ∈ Nm4

}.
Step 5. Apply Algorithm 6 to the above problem to obtain

a reduced and pure LP:
Problem VI.2(∗). Prove F1 subject to R̃(E1) and

R(V ({F1} ∪ E1)).
If F1 ≡ 0, then the objective function F̄ = 0 is proved.

Otherwise, declare ‘Not Provable’.
Next, we give an example to show the effectiveness of

our procedure.

Example IV.1. I(Xi;X4) = 0, i = 1, 2, 3 and
H(X4|Xi, Xj) = 0, 1 ≤ i < j ≤ 3 ⇒ H(Xi) ≥ H(X4).

This example has been discussed in [23]. Due to the
symmetry of this problem, we only need to prove H(X1) ≥
H(X4). Next we give the proof based on Procedure I.

Step 1. We need to solve the problem:
Prove

F̃ = h1 − h4

under constraints C̃i ≥ 0, i = 1, . . . , 28, C̃i = 0, i =
29, . . . , 34.

Steps 2-3. After reduction, the above problem becomes:
Prove

F = h1 − h4

under the constraints Ci ≥ 0, i = 1, . . . , 18, where

C1 = h4, C2 = h1 + h2 − h1,2,
C3 = h1 + h2 + h4 − h1,2,
C4 = h1 + h3 − h1,3, C5 = h1 + h3 + h4 − h1,3,
C6 = h2 + h3 − h2,3, C7 = h2 + h3 + h4 − h2,3,
C8 = −h1 + h1,2 + h1,3 − h1,2,3,
C9 = −h2 + h1,2 + h2,3 − h1,2,3,
C10 = −h3 + h1,3 + h2,3 − h1,2,3,
C11 = −h1 − h4 + h1,2 + h1,3 − h1,2,3,4,
C12 = −h2 − h4 + h1,2 + h2,3 − h1,2,3,4,
C13 = −h3 − h4 + h1,3 + h2,3 − h1,2,3,4,
C14 = h1,2,3 − h1,2,3,4, C15 = −h1,2 + h1,2,3,4,
C16 = −h1,3 + h1,2,3,4, C17 = −h2,3 + h1,2,3,4,
C18 = −h1,2,3 + h1,2,3,4.

(6)

Step 4. Apply Algorithm 2 to the above problem to obtain
a reduced problem:

Problem III.2(∗). Prove F ≥ 0 subject to R̃(J1) and
ai ≥ 0, i ∈ N18, where F = a6 + a7 + a14 and J1 =
{fi, i ∈ N9}.

Step 5. Since F is a conic combination of ai, i ∈ N18,
F̄ ≥ 0 is provable.

The aforementioned problem is proved without solving
any LPs. If we want to further find a reduced minimal
problem, then we can apply Algorithm 6 and 7 to Problem
III.2 to obtain the following LP that contains no implied
equality and redundant inequality:

Prove F1 subject to R̃(E1) and R(V ({F1}∪E1)), where
E1 = {f̃1, f̃2},

F1 = a6 − a11 + a12 + a13 + a17,

f̃1 = a4 − a6 + a11 − a12,

f̃2 = a2 − a6 + a11 − a13.

(7)

Since F1+ f̃2 = a2+a12+a17, we show that F1 ≥ 0. Thus
an explicit proof is given.

V. TWO APPLICATIONS

In this section, we will present two applications of our
method. The first one is an information inequality proved
in [24]. The second one is the example used in [23], in
which we can significantly reduce the required computation
for solving the LP.

A. Dougherty-Freiling-Zeger’s Problem

The information theoretic inequality needs to be proved
in [24] is specified by an LP with 8 random variables.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3531133

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 05,2025 at 08:40:56 UTC from IEEE Xplore.  Restrictions apply. 



10

TABLE I

Number of variables Number of equality constraints Number of Inequality constraints
Direct LP method 255 14 1800

ITIP 241 0 1800
LP obtained in [23] 206 0 1673

This work no LP needs to be solved

Problem P1: Prove I(B;D,X,Z) ≤ I(W ;A,B,C,D)
under the constraints

I(W ;A,B,C,D) = I(X;A,B,W ),
I(W ;A,B,C,D) = I(Y ;B,C,X),
I(W ;A,B,C,D) = I(Z;C,D, Y ),
I(A;B,C,D,Z) = I(B;D,X,Z),
I(B;A,D,W,Z) = I(B;D,X,Z),
I(C;A,D,W,Z) = I(B;D,X,Z),
I(D;A,B,C, Y ) = I(B;D,X,Z),
I(C;A,W, Y ) = I(B;D,X,Z),
I(B;A) = 0, I(C;A,B) = 0,
I(D;A,B,C) = 0, I(X;C,D|A,B,W ) = 0,
I(Y ;A,D,W |B,C,X) = 0,
I(Z;A,B,W,X|C,D, Y ) = 0.

(8)

We now solve Problem P1 by using Procedure I.
Input:
Objective information inequality: F̄ = I(W ;A,B,C,D)−
I(B;D,X,Z) ≥ 0.
Inequality Constraints: the elemental information inequali-
ties generated by random variables A,B,C,D,X, Y, Z,W
(totally 1800 inequalities).
Equality Constraints: totally 14 equalities in (8).

Step 1. The variable vector generated from
A,B,C,D,X, Y, Z,W has 28 − 1 elements (joint
entropies). Transform F̄ into the joint entropy form F̃ .
Express the elemental information inequalities in terms
of the joint entropies to obtain C̃i, i ∈ N1800. Likewise,
express the equality constraints in (8) in terms of the joint
entropies to obtain C̃i = 0, i ∈ N1814\N1800.

Step 2. Apply Algorithm 1 to reduce {C̃i, i ∈ N1800} by
{C̃i, i ∈ N1814\N1800} to obtain {Ci ≥ 0, i ∈ N1793}.

Step 3. Reduce F̃ by {C̃i, i ∈ N1814\N1800} to obtain
F5 = h1,2,3−h1,2,3,4−h1,2,3,7+h1,2,3,4,7+h1,2,3,4,5,6,7+

h8 − h1,2,3,4,5,6,7,8.
We need to solve
Problem IV.1(∗). Prove F5 ≥ 0 under the constraints

Ci ≥ 0, i ∈ N1793.
Step 4. Apply Algorithm 2 to obtain a reduced LP:
Problem III.2(∗). Prove F ≥ 0 subject to R̃(J1) and

ai ≥ 0, i ∈ N1793, where J1 = {fi, i ∈ N1559}.
Step 5. Apply Algorithm 3 and Algorithm 4 to the above

problem successively. Algorithm 4 outputs ‘SUCCESSFUL’.
Thus F̄ ≥ 0 is provable.

In other words, we show that F can be transformed to a
conic combination of {ai ≥ 0, i ∈ N1793} by {fi = 0, i ∈
N1559}. This is given by

F3 = 1
2 (a24 + a28 + a35 + a129 + a185 + a520

+a1048 + a1053 + a1187 + a1237 + a1556 + a1628
+a1681 + a1782).

Thus F̄ ≥ 0 is provable.
Table I shows the advantage of Procedure I for this

example by comparing it with the Direct LP method induced
by Theorem II.2, with ITIP, and with the procedure in [23].
Note that the procedure in [23] can reduce this example to
the minimum LP to the greatest extent possible. However,
we even do not need to solve LP by Procedure I in this
work.

B. Tian’s Problem

The framework of regenerating codes introduced in the
seminal work of Dimakis et al. [16] addresses the funda-
mental tradeoff between the storage and repair bandwidth in
erasure-coded distributed storage systems. In [17], a new
outer bound on the rate region for (4, 3, 3) exact-repair
regenerating codes was obtained. This outer bound was
proved by means of a computational approach built upon the
LP framework in [1] for proving Shannon-type inequalities.
The LP that needs to be solved, however, is exceedingly
large. In order to make the computation manageable, Tian
took advantage of the symmetry of the problem and other
problem-specific structures to reduce the numbers of vari-
ables and constraints in the LP. This outer bound not only
can provide a complete characterization of the rate region,
but also proves the existence of a non-vanishing gap between
the optimal tradeoff of the exact-repair codes and that of the
functional-repair codes for the parameter set (4, 3, 3). It was
the first time that a non-trivial information theory problem
was solved using this LP framework.4

In this work, we apply the results in the previous sec-
tions to Tian’s problem, and give a simpler proof by our
new method. We first give the abstract formulation of the
problem.

4It was subsequently proved analytically by Sasidharan et al. [18] that
the same holds for every parameter set.
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Definition V.1. A permutation π on the set N4 is a one-to-
one mapping π: N4 → N4. The collection of all permuta-
tions is denoted as

∏
.

In the problem formulation, we consider 16 random
variables grouped into the following two sets:

W = {W1,W2,W3,W4},
S = {S1,2, S1,3, S1,4, S2,1, S2,3, S2,4, S3,1, S3,2, S3,4,

S4,1, S4,2, S4,3}.
A permutation π on N4 is applied to map one random

variable to another random variable. For example, the permu-
tation π(1, 2, 3, 4) = (2, 3, 1, 4) maps the random variable
W1 to W2. Similarly it maps the random variable Si,j to
Sπ(i),π(j). When π is applied to a set of random variables,
the permutation is applied to every random variable in the
set. For example for the aforementioned permutation π, we
have π(W1, S2,3) = (W2, S3,1).

The original problem is
Problem P6: Prove

4α+ 6β ≥ 3B (9)

under the constraints
C1 H(π(A), π(B)) = H(A,B), for any sets A ⊆ S and

B ⊆ W and any permutation π ∈
∏

,
C2 H(W ∪ S|A) = 0, any A ⊆ W : |A| = 3,
C3 H(Si,j |Wi) = 0, j ∈ N4, i ∈ N4\{j},
C4 H(Wj |{Si,j ∈ S : i ∈ Nn\{j}}) = 0, for any j ∈ N4,
C5 H(W ∪ S) = B,
C6 H(A) = B, for any A such that |A ∩W| ≥ 3,
C7 H(Wi) ≤ α, Wi ∈ W ,
C8 H(Si,j) ≤ β, Si,j ∈ S.

For this specific problem, the random variables involved
exhibit strong symmetry due to the setup of the problem. To
reduce the scale of the problem, Tian proved in [17, Section
III-B] that only a subset of the random variables in W ∪ S
is needed for solving Problem P6. A similar idea was also
used in [19], [20].

According to Tian’s proof in Section III-B of [17], Prob-
lem P6 can be reduced to the following simpler problem,
Problem P7: Prove

4α+ 6β ≥ 3B (10)

under the constraints: C1, C3, C4, C6, C7 and C8 on the 12
random variables in the set

W1 ∪ S1 = {W1,W2,W4} ∪ {S2,1, S3,1, S4,1, S1,2, S3,2,
S4,2, S1,4, S2,4, S3,4}.

Remark V.1. In the following computation, in order
to simplify the notation, we will use, for example,
h1,2,3,4,5,6,7,8,9,10,11,12 to represent the joint entropy
H(W1,W2,W4, S2,1, S3,1, S4,1, S1,2, S3,2, S4,2, S1,4, S2,4, S3,4).
Similarly, we will use h1 to represent H(W1), h2,5 to
represent H(W2, S3,1), so on and so forth.

We now solve Problem P7 by using Procedure I.
Input:
Objective information inequality: F̄ = 4α+ 6β − 3B ≥ 0.
Inequality Constraints: the elemental information
inequalities generated by random variables W1 ∪ S1

(total 67596 inequalities); C7 and C8 (total 12 inequalities).
Equality Constraints: C1, C3, C4 and C6 (total 22945
equalities).

Step 1. The variable vector generated from W1 ∪ S1

has 212 − 1 elements (joint entropies). Express C7, C8
and the elemental information inequalities in terms of the
joint entropies to obtain C̃i, i ∈ N67608. According to
conditions C1, C3, C4 and C6, write equality constraints
in joint entropy forms: C̃i = 0, i ∈ N90553\N67608.

Step 2. Apply Algorithm 1 to reduce {C̃i, i ∈ N67608} by
{C̃i, i ∈ N90553\N67608} to obtain {Ci ≥ 0, i ∈ N10189}.

Step 3. Reduce F̃ by {C̃i, i ∈ N90553\N67608} to obtain
F5 = 4α+ 6β − 3h2,3,5,6,7,8,10.

We need to solve
Problem IV.1(∗). Prove F5 ≥ 0 under the constraints

Ci ≥ 0, i ∈ N10189.
Step 4. Apply Algorithm 2 to obtain a reduced LP:
Problem III.2(∗). Prove F ≥ 0 subject to R̃(J1) and

ai ≥ 0, i ∈ N10189, where J1 = {fi, i ∈ N9859}.
Step 5. Apply Algorithm 3 and Algorithm 4 to the above

problem successively. Algorithm 4 outputs ‘SUCCESSFUL’.
Thus F̄ ≥ 0 is provable.

In other words, we show that F can be transformed to
a conic combination of {ai, i ∈ N10189} by {fi = 0, i ∈
N9859}. This is given by

F3 = 7a6 + 2a85 + 4a94 + a119 + a167 + 3a169 + 4a211
+a223 + a290 + a335 + a340 + a353 + 4a450 + 4a484
+a519 + a667 + a727 + 4a735 + a819 + a820 + a827
+a829 + a859 + a868 + 3a906 + a916 + 4a10188
+6a10189.

(11)
The formulas used above is listed in Appendix B.

Table II shows the advantage of Procedure I for Tian’s
problem by comparing it with the Direct LP method induced
by Theorem II.2, ITIP, Tian’s method in [17], and our
previous work in [23].

Note that even if Algorithm 4 cannot obtain a conic
combination as desired, it can still reduce the problem to
the minimal LP in a shorter time and with less memory
compared with our previous work [23]. Table III shows the
advantage of Procedure I for reducing Tian’s problem by
comparing it with the procedure in [23]. In Table III, “Time”
and “Memory” refer to the time and memory it takes to
simplify the original LP to the minimal LP, respectively.
The experiment results are obtained by MAPLE running on
a desktop PC with an i7-6700 Core, 3.40GHz CPU and 16G
memory.
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TABLE II

Number of variables Number of Equality constraints Number of Inequality constraints
Direct LP method 4098 22945 67608

ITIP 600 0 67608
Tian’s Method 176 0 6152

LP in [23] 101 0 649
This work no LP needs to be solved

TABLE III

Number of variables Number of Inequality constraints Time Memory
LP in [23] 101 649 23000s 900M

LP in this work 101 649 33s 70M

VI. CONCLUSION AND DISCUSSION

In this paper, we have developed a heuristic method to
prove information inequalities and identities. This method
does not prove an information inequalities or identities
by directly solving the associated LP, but rather expedites
the explicit proof process through polynomial reduction.
The method may not succeed in proving the inequality or
identity every time. If it does not succeed, it can simplify
the original LP into a smaller LP. We have given several
examples to verify the effectiveness of our method. It is
observed from these examples that the average complexity
of our method is polynomial in the dimension of the entropy
vector, while the complexity of ITIP and most subsequent
works based on linear programming are estimated to be
exponential in the dimension of the entropy vector, and
the complexity of the method proposed in [22] is roughly
between the above two. Experiments have shown that for
most problems with equality constraints, we can have not
only one non-negative representation, but many non-negative
representations. Based on this fact, we can obtain a non-
negative representation with very few attempts using Algo-
rithm 4, which is also verified by the experimental results
in Section V.

As discussed in Section III, since different elimination
choices of variables can lead to different results, our heuristic
method (Algorithm 4) may not necessarily succeed. Never-
theless, if the first attempt is unsuccessful, we can repeat the
attempt with different elimination choices of variables for
a certain maximum number of times. Next, we summarize
in Table IV some experimental results on the effectiveness
of Algorithm 4 for solving various problems. In the table,
“TS” denotes the number of times we need to run Algorithm
4 to obtain a successful result, “TSH” denotes the number
of times out of one hundred runs5 of Algorithm 4 that are

5Note that the one hundred attempts here may contain replications, but as
mentioned in Remark III.2, the probability of this is very low. For details,
refer to Remark III.2.

successful, and “Time” denotes the total time required to
repeatedly run Algorithm 4 to obtain a successful result.

TABLE IV

TS TSH Time
Example III.5 2 52 2s
Example IV.1 1 100 0.2s

Dougherty-Freiling-Zeger’s
problem 3 32 11s

Tian’s problem 12 10 80s

The data given in Table IV is for reference only. The
problems listed in the table are all solvable. For problems
that are not solvable, we have to use Algorithm 5 to solve an
LP which typically has a much smaller size compared with
the original problem, and Algorithm 5 will output ‘FALSE’.
Compared with [23], the method here for obtaining the
reduced minimal characterization set is considerably simpler.

To end this paper, we put forth the following conjecture
on the effectiveness of Algorithm 4:

Conjecture. If the problem is solvable, then there exists
at least one ordering of the variables such that Algorithm 4
outputs ‘SUCCESSFUL’.

APPENDICES

A. Two enhancements of Algorithm 3

In this section, we present two algorithms as enhance-
ments of Algorithm 3. We call Problem III.3 a pure LP if it
contains no implied equality, and call it a minimal LP if it
contains no redundant inequality.

First, we give a general algorithm for reducing Problem
III.3 to a pure LP.

Algorithm 6 Pure LP Algorithm

Input: Problem III.3.
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Output: A pure LP.

1: Use Algorithm 3 to reduce Problem III.3 to
2: Problem III.5. Proving F1 ≥ 0 subject to R̃(E1) and

R(S1).
3: for i from 1 to m do
4: Apply Algorithm 4 to solve the following LP:

Problem VI.1. Prove −ai ≥ 0 subject to R̃(E1)
and R(S1).

5: if Algorithm 4 outputs ‘SUCCESSFUL’ then
6: E1 := subs(ai = 0, E1)\{0}.
7: S1 := S1\{ai}.
8: F1 := subs(ai = 0, F1).
9: else

10: Algorithm 4 outputs a reduced LP. Apply Algo-
rithm 5 to solve this LP.

11: if Algorithm 5 outputs ‘TRUE’ then
12: E1 := subs(ai = 0, E1)\{0}.
13: S1 := S1\{ai}.
14: F1 := subs(ai = 0, F1).
15: end if
16: end if
17: end for
18: Reduce F1 by E1 to obtain the remainder F2 and the

RREF of E1, E2.
19: return A pure LP:

Problem VI.2. Prove F2 subject to R̃(E2) and
R(V ({F2} ∪ E2)).

Next, we give a general algorithm for finding a minimal LP
from Problem III.3.

Algorithm 7 Minimal LP Algorithm

Input: Problem III.3.
Output: A minimal LP.

1: Run Algorithm 3 to reduce Problem III.3 to
2: Problem III.5. Prove F1 ≥ 0 subject to R̃(E1) and

R(S1).
3: for i from 1 to m do
4: Let S̄a = S1\{ai}.
5: if ai ∈ V (f) for some f ∈ E1 then
6: Solve ai from f = 0 to obtain ai = Ai.
7: else
8: Let Ai be ai.
9: end if

10: Ēa := subs(ai = Ai, E1)\{0}.
11: Run Algorithm 4 to solve the following LP:

Problem VI.3. Prove Ai ≥ 0 subject to R̃(Ēa)
and R(S̄a).

12: if Algorithm 4 outputs ‘SUCCESSFUL’ then
13: E1 := subs(ai = Ai, E1)\{0}.
14: S1 := S1\{ai}.

15: F1 := subs(ai = Ai, F1).
16: else
17: Algorithm 4 outputs a reduced LP. Apply Algo-

rithm 5 to this LP.
18: if Algorithm 5 outputs ‘TRUE’ then
19: E1 := subs(ai = Ai, E1)\{0}.
20: S1 := S1\{ai}.
21: F1 := subs(ai = Ai, F1).
22: end if
23: end if
24: end for
25: Reduce F1 by E1 to obtain the remainder F2 and the

RREF of E1, E2.
26: return A minimal LP:

Problem VI.4. Proving F2 subject to R̃(E2) and
R(V ({F2} ∪ E2)).

Next, we give the detailed steps of the reduction from
Problem III.7(∗) to Problem III.8(∗).

// We first follow Algorithm 6.
Step 1. Use Algorithm 3 to reduce Problem III.7(∗) to
Problem III.5(∗). Proving F1 ≥ 0 subject to R̃(E1) and

R(S1), where F1 = − 1
2 (a2 − a4 − 3a9 − a10 + a11 + a12),

E1 = {a1+a2−a4+a9+a10−a11−a12, a3+a9+a10−
a11 − a12, a6 − a9 − a10 + a11 + a12}, and
S1 = {a1, a2, a3, a4, a6, a9, a10, a11, a12}.

Step 2. For i ∈ N12\{5, 7, 8}, run Algorithm 4 to solve
the following LP:

Problem VI.1(∗). Prove −ai ≥ 0 subject to R̃(E1) and
R(S1).

Step 3. Algorithm 4 outputs ‘SUCCESSFUL’ when i = 3,
then let
E1 = subs(a3 = 0, E1)\{0} = {a1+a2−a4+a9+a10−

a11 − a12, a9 + a10 − a11 − a12, a6 − a9 − a10 + a11 + a12},
S1 = S1\{a3} = {a1, a2, a4, a6, a9, a10, a11, a12},
F1 = subs(ai = 0, F1) = − 1

2 (a2−a4−3a9−a10+a11+
a12).

Step 4. Algorithm 4 outputs ‘SUCCESSFUL’ when i = 6,
then let
E1 = subs(a6 = 0, E1)\{0} = {a1+a2−a4+a9+a10−

a11 − a12, a9 + a10 − a11 − a12,−a9 − a10 + a11 + a12},
S1 = S1\{a6} = {a1, a2, a4, a9, a10, a11, a12},
F1 = subs(ai = 0, F1) = − 1

2 (a2−a4−3a9−a10+a11+
a12).

// For i ∈ N12\{3, 5, 6, 7, 8}, Algorithm 4 outputs ‘UN-
SUCCESSFUL’ and Algorithm 5 outputs ‘FALSE’.

Step 5. Reduce F1 by E1 to obtain
Problem VI.2(∗). Prove F2 subject to R̃(E2) and

R(V ({F2} ∪ E2)),
where F2 = − 1

2a2 + 1
2a4 − a10 + a11 + a12 and

E2 = {a1 + a2 − a4, a9 + a10 − a11 − a12}.

// Next, we will follow Algorithm 7.
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Step 6. Use Algorithm 3 to reduce Problem VI.2(∗) to
Problem III.5(∗). Proving F1 ≥ 0 subject to R̃(E1) and

R(S1),
where F1 = 1

2a1 − a10 + a11 + a12, E1 = {a9 + a10 −
a11 − a12}, and S1 = {a1, a9, a10, a11, a12}.

// Now we obtain Problem III.8 in Example III.5.

B. Formulas in (11)

In this section, we list the formulas used in (11).

2h11 − h11,12 = a6,
h6,7,8,9,10,11,12 − h2,3,8,9,10,11,12 = a85,
2h11,12 − h3,9,10,11,12 − h11 = a94,
2h3,8,9,11 − h2,3,6,9,10,12 − h3,9,12 = a119,
h3,9 + h9,12 − h3,8,9 − h11 = a167,
h3,9 + h11,12 − h3,8,9 − h11 = a169,
h3,8,9 + h8,9,10,12 − h3,5,7,9 − h8,10,12 = a211,
h3,9,12 + h6,7,9,10 − h1,5,10,12 − h6,9,11 = a223,
h8,11,12 + h6,9,11 − h6,7,9,10 − h9,12 = a290,
h1,5,10,12 + h6,7,9,10,11 − h3,8,9,11,12 − h6,7,9,10 = a335,
h2,3,11,12 + h3,8,10,11 − h2,3,8,10,11 − h3,8,9,11 = a340,
h2,3,11,12 + h3,5,6,7,10,12 − h2,3,8,11,12 − h3,5,6,7,9,10 = a353,
h3,8,10,12 + h3,5,7,9 − h2,3,11,12 − h8,9,10,12 = a450,
h3,9,11,12 + h8,10,12 − h3,8,10,12 − h11,12 = a484,
h6,7,9,10 + h8,9,11,12 − h6,7,9,10,11 − h8,11,12 = a519,
h2,3,8,11,12 + h3,5,7,9,10,11,12 − h2,3,8,9,10,11,12

−h3,5,6,7,10,12 = a667,
h3,8,9,11,12 + h6,8,9,11,12 − h3,5,6,7,10,12 − h8,9,11,12 = a727,
h3,9,10,11,12 + h3,8,10,12 − h8,9,10,11,12 − h3,9,11,12 = a735,
h8,9,10,11,12 + h3,5,6,7,10,12 − h3,5,7,9,10,11,12

−h3,8,10,12 = a819,
h8,9,10,11,12 + h3,5,6,7,10,12 − h3,5,7,9,10,11,12

−h3,8,9,11,12 = a820,
h8,9,10,11,12 + h2,3,8,9,10,11,12 − h6,7,8,9,10,11,12

−h3,8,10,11 = a827,
h2,3,6,9,10,12 + h2,3,8,10,11 − h2,3,8,9,10,11,12

−h2,3,11,12 = a829,
h3,5,6,7,9,10 + h3,8,9,11,12 − h3,5,6,7,10,12 − h3,8,9,11 = a859,
h3,5,6,7,10,12 + h8,9,10,11,12 − h2,3,8,9,10,11,12

−h6,8,9,11,12 = a868,
h2,3,8,9,10,11,12 + h2,3,11,12 − h2,3,5,6,7,8,10

−h3,8,10,12 = a906,
h3,5,7,9,10,11,12 + h2,3,8,9,10,11,12 − h6,7,8,9,10,11,12

−h3,5,6,7,10,12 = a916,
α− h3,9 = a10188, β − h11 = a10189.
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